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N
Remediating PFAS With Colloidal Activated Carbon (CAC)

Typical CAC soil concentration in PRBs: 2,000 mg/kg
Fraction of CAC (f.,.): 0.2%

CAC PRB
Injection

Courtesy of REGENESIS

PRB: Permeable Reactive Barrier
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Remediating PFAS With Colloidal Activated Carbon (CAC)

PFPeS  Pre-injection

In-barrier monitoring well

PFHxS

/A000

10,000
PFOS

O Non-detect
Concentrations in ng/L

CAC PRB

Note: Radial diagram illustrated using Visual
CHEM which was developed by Porewater
Solutions.

More info: www.porewater.com/PFAS.html
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Remediating PFAS With Colloidal Activated Carbon (CAC)

CAC PRB
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U.S. DoD SERDP/ESTCP Project Involvement

ESTCP ER21-3959

ESTCP ER20-5182

ESTCP ER21-1070

ESTCP ER24-8200

An Investigation of Factors Affecting In Situ PFAS
Immobilization by Activated Carbon

Validation of Colloidal Activated Carbon for
Preventing the Migration of PFAS in Groundwater

Hydraulic, Chemical, and Microbiological Effects of
In Situ Activated Carbon Sorptive Barrier for PFAS
Remediation in Coastal Sites

Two PFAS Remediation Models for Understanding
and Managing PFAS in the Saturated Zone
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The In-Situ Remediation Model (ISR-MT3DMS)

* Originally developed in 1998 as BioRedox-
MT3DMS

* Used to support SERDP-ESTCP projects

* PFAS-related functionality
v’ PFAS re-equilibration after CAC injection
v’ Kinetic sorption
v' Competitive adsorption ]
v’ Colloidal transport
v' CAC aging

— In progress

South Dakota Air Force Base

Carey et al. (2023)
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1. PFAS competitive adsorption effects

e 17 Field case studies

2. Case Studies of PFAS remediation using CAC
* South Dakota site — CAC PRB placement
» Coastal site — tidal effects, geochemistry

e Eastern US site — short- vs. long-chain, CAC heterogeneity effects

3. Long-term PFAS remediation strategies
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PFAS Competitive Adsorption
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Evaluating CAC Effectiveness for PFAS Remediation

Carey et al. (2022) Single Species and Groundwater Sample Isotherms (Freundlich)
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Longevity of colloidal activated carbon for in situ PFAS

remediation at AFFF-contaminated airport sites
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*Porewater Solutions, Ottawa, Ontario,
Canada Abstract

2Department of Civil and Environmental A review of state per- and polyfluoroalkyl substances (PFAS) guidelines indicates
Engineering, University of Waterloo, Ontario,

Watelionn Canaia that four long-chain PFAS (perfluorooctanesulfonic acid [PFOS] and perfluoroocta-

noic acid [PFOA] followed by perfluorohexanesulfonic acid [PFHxS] and perfluor-
ononanoic acid [PFNA]) are the most frequently regulated PFAS compounds.
Analysis of 17 field-scale studies of colloidal activated carbon (CAC) injection at
PFAS sites indicates that in situ CAC injection has been generally successful for both
short- and long-chain PFAS in the short-term (0.3-6 years), even in the presence of
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Ontario, Canada
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low levels of organic co-contaminants. Freundlich isotherms were determined under
competitive sorption conditions using a groundwater sample from an aqueous film-
forming foam (AFFF)-impacted site. The median concentrations for these PFAS of
Email: gcarey@porewater.com

interest at 96 AFFF-impacted sites were used to estimate influent concentrations for
Funding information

100

a CAC longevity model sensitivity analysis. CAC longevity estimates were shown to

Sorbed Concentration, S (mg/kg)

Porewater Solutions, Ontario Centers for
Excellence, and Natural Sciences and
Engineering Research Council

be insensitive to a wide range of potential cleanup criteria based on modeled

conditions. PFOS had the greatest longevity even though PFOS is present at higher
concentrations than the other species because the CAC sorption affinity for PFOS is
considerably higher than PFOA and PFHxS. Longevity estimates were directly
proportional to the CAC fraction in soil and the Freundlich K, and were inversely

Seyfollah Gilak
Hakimabadi

proportional to the influent concentration and average groundwater velocity.

and perfluorocarboxylates (PFCAS). The fluorocarbon chain length of 10
these PFAAs affects the relative toxicity and hydrophobicity of these 1.E-04

1 | INTRODUCTION

1.E-03 1.E-02 1.E-01

Per- and polyfluoroalkyl substances (PFAS) have been widely used on
a global level for many decades. Perhaps the greatest source of PFAS
contamination in the environment today is the use of aqueous
film-forming foams (AFFF) for putting out fires. A large number of
military and civilian airports have PFAS soil and groundwater
contamination due to historical fire training activities. PFAS include
polyfluoroalkyl precursors and recalcitrant perfluoroalkyl acids
(PFAAS). PFAAS consist of two classes: perfluorosulfonates (PFSAs)

compounds. The widespread occurrence of PFAS in the subsurface,
combined with their recalcitrance and toxicity, presents a significant
groundwater remediation challenge. This challenge is compounded
by uncertainty in future regulatory changes anticipated at the federal
and state levels, regarding which individual PFAS will be regulated
and corresponding clean-up goals.

The most common approach used today for the remediation of
PFAS in

involves with ex situ

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.
© 2022 The Authors. Remediation published by Wiley Periodicals LLC.

Remediation. 2022;1-21

wileyonlinelibrary.com/journal/rem 1

Aqueous Concentration, Cw (mg/L)

17 Field case studies generated CAC effectiveness, even
in the presence of low levels of organic co-contaminants.

Copyright 2024 Porwater Solutions 10



Influence of Competition on Relative K

PFBS Isotherms Singh et al. (2024)
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Effects of Competitive Adsorption

1600 1511 Carey et al. (2023)
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Chemicals Competing with PFAS for Adsorption

* Long-chain vs. short chain

 Sulfonates vs. carboxylates

* Precursors vs. PFAAs

* Hydrocarbons (if present)

* Natural organic matter (DOC, TOC in groundwater)

PFAS of Concern: Lower competition in
downgradient PRBs vs. source area

Copyright 2024 Porwater Solutions 13



PlumeStop” Results at 17 PFAS Field Sites

PlumeStop® successfully reduced PFAS mass flux in the CAC zone by
orders of magnitude with up to 6 years of monitoring.

Carey et al. (2022)

Average Most-
Site Impacted

Concentrations at site (ug/L): PFOS 1.0 152

PFOA 0.9 29

Hidalelfofa%8 Silty sand or fine sand (13 of 17 sites)

0.02% to 0.8% (average 0.2%)

Competitive adsorption observed? | co-contaminants: No

DOC: Yes, at a landfill

Copyright Porewater Solutions (2023) 14



Case Studies of PFAS

Remediating Using CAC

Section 2
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South Dakota Site: Integrated PRB Alternative

Carey et al. (2023)

t =10y t =20y
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Coastal Site Conceptual Model

Source

Area

PFOA Concentration

a) Prior to CAC injection

Tidally-influenced /

dilution (50%) at shore

Distance

Semi-confining silt layer

Freshwater aquifer

Clay aquitard

Shore

PFOA Concentration

b) Two years after CAC injection

Carey et al. (2024)

Accumulation inside
downgradient CAC

Distance

boundary

== High tide
p—) | OW tide

Shore
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Model Calibration of CAC
erformance at A Field Site

O Non-detect
Concentrations in ng/L

CAC PRB

Copyright 2024 Porwater Solutions

18



Modeling Objectives

Groundwater Sample Long-chain Isotherms

* Quantify relative adsorption of PFAS to
CAC based on:

e Chain length

 Sulfonates vs Carboxylates

e Evaluate cause of low-level detections in
PRB wells (low ng/L)

* Quantify desorption behavior
downgradient of PRB

* Predict PRB longevity

19



PFOA vs PFOS Trends

CAC Zone CAC Zone
a) CAC boundary O ‘ b) Shore +
1000 1000
100 100 PFOS
Breakthrough '
10 10
E PFOA ] E PEOA
= [ eros -,
R S 0.004 Hg/L o O e 0:004 gL
0.001 0.001
0.0001 0.0001
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (years) Time (years)
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Eastern U.S. Site CAC Permeable Reactive Barrier

DEPTH (FT-BGS)

104

UPGRADIENT DOWNGRADIENT
INJECTION INJECTION
ROW ROW

SILTY SAND

SILTY/SANDY CLAY

Vi

-

BMW-1S

S

SRR FINE SAND

-10

-15

Carey et al. (2024) — in progress

APTIM

Dr. Paul Hatzinger
Dr. Graig Lavorgna
Dr. David Lippincott

Navy
Dr. Tony Danko

PMW-3D PMW-4D

Air Force Civil Engineer Center

Field Demonstration of Colloidal
Activated Carbon for In Situ
Sequestration of Per- and
Polyfluoroalkyl Substances

7

% &
U S
@CIV]L Eﬂﬁmﬁx\ Tony Danko, Ph.D., P.E.

Environmental Engineer
m NAVFAC EXWC/SH321
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Eastern U.S.

Site CAC Permeable Reactive Barrier

DEPTH (FT-BGS)

B UPGRADIENT DOWNGRADIENT B’
INJECTION  INJECTION
o ROW ROW o
SILTY SAND
SILTY/SANDY CLAY
5 AV 5
10 : 10
BMW.15 i PMW-2S £ PMW-38 | PMW4S  |<—
15 | -15
201 H -20
BMW-1D e 5{PMW-2D 5 PMW-3D 5 PMW-4D
25 25
SILTY/CLAYEY SAND
LEAN CLAY
30 30

Modeled vertical extent includes

the shallow well screen interval
(5 ft thick).

Air Force Civil Engineer Center

Field Demonstration of Colloidal
Activated Carbon for In Situ
Sequestration of Per- and
Polyfluoroalkyl Substances

Copyright 2024 Porwater Solutions
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Downgradient Wells Influenced by Water Table

Depth to Groundwater (ft. bgs)

Date
8-10-22 2-8-23 8-10-23
@)

O

—— Depth to water table

O PFBS at PMW-3S

160

60

PFBS Observed at PMW>

40

20

Spikes in PFBS downgradient from
PRB after 2-3 ft rise and fall in water

table.

)

CAC
PRB
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Model Domain and Boundary Conditions

PMW-2S
PMW-3S
PMW-4S

2-D (60 layers, 1-inch thick)

' PMW-1S

Sulfonate Conc. Vs Time

Carey et al. (2015)
a, = 0.08K 016
a,=0.3m
Note: Kin m/s

Model Y (m)

Model X (m)

1-D (1 layer, 1.5-m thick)

n (ng/L)

CAC

K = 150 ft/y
i = 0.001 ft/ft
v =220 ft/y
f_=0.2%
0, = 0.25
p, = 1.6 kg/L
o, =0.03m

24




10 PFAS Solutes Modeled

Maximum
Koc Retardation GW Conc. EPA MCL | Exceedance
Class Solute (L/kg) Coefficient (ng/L) (ng/L) Factor
PFBS 80 2.0 510
PFPeS 105 2.3 777
Sulfonates PFHXS 130 2.7 9,100 10 910
PFHpS 265 4.4 704
PFOS 920 12.8 60,300 4 15,075
PFBA 40 1.5 768
PFPeA 50 1.6 2,220
Carboxylates PFHXA 80 2.0 1,860
PEHpA 100 2.3 1,550
PFOA 120 2.5 2,040 4 510

Notes:

1. Koc is based on averages calculated with McGuire et al. (2014) dataset — see Carey et al. (2019) SI.

2. PFNA maximum concentration in groundwater was 552 ng/L, with an exceedance factor of 55.
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Modeled CAC Distribution

Target fraction of CAC (f_,.): 0.2% (CAC = 2,000 mg/kg)

4” to 6” intervals

without CAC & & % g
= = = =
z 5 z 5
1.5
E10
>_
[0
3
= 0.5
0.0
18 26

Model X (m)

28

Model f__
(g/8)

0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008
0.0009
0.0010 to 0.0014
0.0015 to 0.0025
0.0025 to 0.0050

EEECOEEEERENEDC

O Observed f_,.
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Model Y (m)

Modeling CAC Injection: PFAS Concentration

PFAS adsorbed to CAC particles
B e e

) -

; + ¥
( iy -,
& +AY F 0
ok % o b :
’ ’ ") \ e 7
- 4
el
: ' 4
i

o I ‘
18 20 22 24
Model X (m)

26 28

PFBS pre-injection

1000 j

100
- Modeled
2 10
5 1 CAC Zone PFBS 2 days
5 / post-injection
8 o1 /
S ;

0.01 /

18 20 22 24 26
Distance (m)

1. Model first simulates pre-injection plume (stable)
2. CAC Injected in PRB
3. PFAS post-injection Conc. calculated by model (re-equilibration)

28
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Modeling CAC Injection: PFAS Re-equilibration

T ISR-MT3DMS calculates post-
ISR-MT3DMS Mass Balance: CAC Injection injection PFAS concentrations
a) Prior to CAC Injection b) Immediately after CAC Injection immediately after CAC injection,
based on mass conservation.
S . Post-injection C depends on:
© E
29w * PFAS adsorption isotherms
O o
= N 200 200
g % 100 ' 100 l . fcac
= Ce
, A N * Pre-injection adsorbed C
Aqueous  Sorbed Aqueous  Sorbed Sorbed to
to NOM toNOM  CAC e f C K
oc’ w/ o]®

Design Tip: Check that calculated PFAS post-
injection concentrations are below MClLs.
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Mass Adsorbed
to CAC 2 Days
Post-Injection

Solute (mg)
PFBS 7
PFPeS 12
PFHXS 142
PFHpS 20
PFOS 5,058

PFBA 8
PFPeA 25
PFHXA 26
PFHpA 24
PFOA 32

Model Mass Balance

20,000
PFOS
o
g 15,000
Y
o
a
£
Q
S
S 10,000
gl
&
3
o
<
5
© 5,000
p
_______ PFHxS
0 :-r———____—--_ ........................................... PFOA
0 100 200 300 400 500 600

Time After CAC Injection (days)
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Multi-Layer Monitoring Wells in ISR-MT3DMS

* Monitoring wells screened over 60 layers

* |ISR-MT3DMS calculates transmissivity-weighted average concentration over all screened model
layers

* Breakthrough in some layers with lower fcac will be diluted in the well with clean water from
other layers

1.5
€ 10
>_
[
S 0.5
20.
0.0 | | | | | | | |
0 5 10 15 20 25 30 35 40

Model X (m)
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Eastern US Site: Calibrated PFAS Adsorption Isotherms

100,000

10,000

1,000
100
10 I '

1
/PFBS PFPeS |PFHxS| PFHpS |PFOS ||| PFBA PFPeA PFHxA PFHpA PFOA

Relative Freundlich
Adsorption Coefficient
(mg/kg)(mg/L)?

Hazard Index
(PFAS mixture) MCL
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Modeled PFAS Trends at In-Barrier Monitoring Wells

Concentration (ng/L)

Concentration (ng/L)

PFBS PFPeS
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Blue: PMW-1S (x=5 ft into PRB)
Orange: PMW-2S (x=10 ft into PRB)
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Modeling CAC Injection: Right f_,. zone = 0.4%

PFBS PFPeS PFHXS PFHpS PFOS
100000 100000 100000 100000 100000 *
| | ]
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Modeled PFOS Concentrations in Cross-Section

CAC not present

t =400 days \

PMW-1S
PMW-2S
PMW-3S
PMW-4S

1.5 » Concentration (ng/L)
— .1 <0.01
E 1.0 I I 0.01t0 0.1
>_
Z S , - Moito1
o PFOS > 10,000 pg/L !m"
§ 0.5 ] 1t010
" 1 10to 100
0.0 ™ 100 to 1,000
16 18 20 22 24 26 2 1,000 to 10,000
Model X (m)

Bl >10,000

ISR-MT3DMS calculates the transmissivity-weighted average
of PFAS concentrations in multi-layer well screens.
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Modeled PFBS Concentrations in Cross-Section

15 o o o o
t =100 days
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Modeled PFOS Concentrations in Cross-Section

PMW-1S
PMW-2S
PMW-3S
PMW-4S

t =100 days

Concentration (ng/L)
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16 18 20 22 24 26 28 30 M o1to
Model X (m) '
0 9 2 2 ] 1to 10
z g = =
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East US Site: PFAS Desorption Downgradient of PRB

PFHXS: Kinetic vs Equilibrium Desorption
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Concentration (ng/L)

Concentration (ng/L)

Kinetic Desorption Using ISR-MT3DNM S
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Long-Term

Remediation Strategies

Section 3
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Integrated Remedy Analysis

Source Area Future CAC PRB
PFOAC, . =18 ug/L PFOAC, ., =10 ug/L
Md=71g/y fac=0.2%

Area = 6700 sq. ft. / Property boundary

|/

0

Scale, in feet

300

600

* Velocity = 200 ft/year, f,. = 0.1%

* 50% source mass discharge from vadose zone

PFOA (ug/L)

10 to 100

B > 100
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Simulated Remedial Alternatives

Alternative No. 1
CAC PRB

Alternative No. 2
CAC PRB + Partial Wall

Alternative No. 4
CAC PRB + Cover

Alternative No. 4
CAC PRB + Full Wall + Cover

> Pre-remediation plume outline

Source mass discharge
declines with half-life of 30
years (Carey et al., 2019)

Scale, in feet

300

CAC: colloidal activated carbon
PRB: permeable reactive barrier
Md: Mass discharge

Copyright 2024 Porwater Solutions
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Modeled PFOA Plumes 30 years Post-Injection

Alternative No. 1

CACPRB
Source Md =36 g/y

Alternative No. 2
CAC PRB + Partial Wall
Source Md =35 g/y

Alternative No. 4

CAC PRB + Cover
Source Md =18 g/y

Alternative No. 4

CAC PRB + Full Wall + Cover
Source Md < 1

Scale, in feet

0 300

> Pre-remediation plume outline

PFOA (ug/L)

10 to 100

B > 100

CAC: colloidal activated carbon

PRB: permeable reactive barrier
Md: Mass discharge

Copyright 2024 Porwater Solutions
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New EPA PFAS MCLs (April 2024)

EPA Final MCL (pg/L
PFAS e/l

‘o PFOS PFOA PFHXS PFNA | HFPO-DA
2l R 0.004 0.004 0.010 0.010 0.010

Hazard Index (HI) MCL for PFAS Mixtures

PFNA PFHxS PFBS HFPO — DA
Hazard Index (HI) MCL = ( ) + < ) + ( ) + ( ) =1

0.01 ug/L/) ' \0.01 pg/L

2 ng/L 0.01 ug/L

Mixtures of two or more of these PFAS are not to exceed HI of 1
PFHxS and PFNA adsorb well in CAC PRBs

PFBS is not of concern on its own

Establishing site background will be critical
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CAC Long-Term Remediation Strategies

Downgradient PRBs
* Greater longevity
* Faster goal attainment at downgradient receptors

Short-Term Goal: PFAS mass discharge ‘

Longer Term Goal: Cleanup criteria attainment

* Attenuation between compliance bdy and receptor?
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What Happens to CAC PRBs In the Long-Term?

BSERDP $©ESTCP

Future options when CAC is
spent:

Development arfé’%jpplication of Injectable
" Fuels/Adjuncts 8P 1n Sitesfreattment of &

1 ' I nJ ECt fOI IOW-U p CAC P R B PFAS and Co—Océurring Qhemicals in '
S | |g htly d own g ra d lent I Source Argas by Smoldering Gombustion

* Low Net Present Value (NPV) cost Ob,-;.e s

The overall objective of this project is to demonstrate the use of an injectable liquid fuel that supports in
itu smoldering combustion that causes the destruction and volatilization of per- and polyfluoroalkyl substances

(PFAS) and co-occurring chemicals from source areas.
Webinar

(@ Advances in PFAS Destructive Technologies

2. In 10-20 years, we may have
technologies to treat PFAS-
laden CAC in-situ (e.g.,
thermal)

5/2/2024
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Questions?

Grant R. Carey, Ph.D.

Porewater Solutions
gcarey@porewater.com
Phone: 613-890-2286

POREWATER SOLUTIONS
Expertise ¢ Experience e Innovation

www.porewater.com/PFAS.html

2024 Chlorinated Confet - B R o Porewater Solutions
June 2-6, 2024 | Denver, Coloracioms L:L — EEW — ¥ = Booth No. 244

battelle.org/chlorcon | #Chlorinated2024
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