PFAS Visualization Case Studies for Improving Conceptual Models

By Grant Carey, Ph.D.

Porewater Solutions

Email: gcarey@porewater.com

PFAS Site Characterization

GW/Soil Samples

- Up to 40 PFAS analytes
 - Precursors and regulated PFAS
- Organic co-chemicals
- Redox indicators

	Table 3 PFAS Analytical Results																								
		PFAS µg/L																							
Monitoring Well ID	Perfluorooctanoic acid (PFOA)	Perfluorooctanesulfonic acid (PFOS)	Sum of PFOA and PFOS	Perfluorobutanoic acid (PFBA)	Perfluoropentanoic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoic acid (PFHpA)	Perfluorononanoic acid (PFNA)	Perfluorodecanoic acid (PFDA)	Perfluoroundecanoic acid (PFUnA)	Perfluorododecanoic acid (PFDoA)	Perfluorotridecanoic acid (PFDoA)	Perfluorotetradecanoic acid (PFTeDA)	Perfluorobutanesulfonic acid (PFBS)	Perfluoropentanesulfonic acid (PFPeS)	Perfluorohexanesulfonic acid (PFHxS)	Perfluoroheptanesulfonic acid (PFHpS)	Perfluorononanesulfonic acid (PFNS)	Perfluorodecanesulfonic acid (PFDS(Perfluorooctane sulfonamin <i>d</i> e (PFOSA)	2-(N-Methyl-perfluorooctane sulfonamido) acetic acid	2-(N-Ethyl-perfluorooctane sulfonamido acetic acid	4:2 Fluorotelomer sulfonate (4:2 FTS)	6:2 Fluorotelomer sulfonate (6:2 FTS)	8:2 Fluorotelomer sulfonate (8:2 FTS)
MW96BGO408	0.0035 J	0.0077	0.0112 J	0.0091 J	0.0034 J	0.0042 J	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0091	0.0057 J	0.036	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.015 U	0.015 U	0.0077 U	0.0077 U	0.0077 U
MW96BGO422	0.303	4.68	4.983	0.127	0.408	0.535	0.136	0.0047 J	0.0040 U	0.0040 U	0.0040 U	0.0040 U	0.0040 U	0.176	0.212	1.7	0.132	0.0040 U	0.0040 U	0.0040 U	0.016 U	0.016 U	0.0080 U	0.104	0.0080 U
MW96BGO425	0.0043 J	0.0222	0.0265 J	0.0056 J	0.0052 J	0.0064 J	0.0021 J	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0061 J	0.0047 J	0.029	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.015 U	0.015 U	0.0077 U	0.0077 U	0.0077 U
MW972406	0.32	2.97	3.29	0.151	0.469	0.592	0.153	0.0043 J	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.209	0.223	1.58	0.112	0.0042 U	0.0042 U	0.0042 U	0.017 U	0.017 U	0.0083 U	0.129	0.0083 U
MW972408	0.187	1.4	1.587	0.0828	0.255	0.301	0.0833	0.0027 J	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.117	0.124	0.937	0.0564	0.0038 U	0.0038 U	0.0038 U	0.015 U	0.015 U	0.0077 U	0.0698	0.0077 U
MW972410	0.115	0.403	0.518	0.0623	0.173	0.208	0.0562	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0992	0.0992	0.665	0.0267	0.0042 U	0.0042 U	0.0042 U	0.017 U	0.017 U	0.0083 U	0.0111 J	0.0083 U
MW982415	0.0617	0.0158	0.0775	0.0289	0.0633	0.0983	0.0229	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0892	0.0643	0.288	0.0066 J	0.0042 U	0.0042 U	0.0042 U	0.017 U	0.017 U	0.0083 U	0.0083 U	0.0083 U
MW982416	0.103	0.31	0.413	0.0561	0.151	0.185	0.049	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0949	0.104	0.668	0.0231	0.0042 U	0.0042 U	0.0042 U	0.017 U	0.017 U	0.0083 U	0.0083 U	0.0083 U
MW982422	0.282	1.73	2.012	0.137	0.432	0.525	0.133	0.0023 J	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.201	0.213	1.49	0.0927	0.0038 U	0.0038 U	0.0038 U	0.015 U	0.015 U	0.0077 U	0.0881	0.0077 U
MW002422	0.0748	0.121	0.1958	0.0395	0.0935	0.131	0.0302	0.0040 U	0.0040 U	0.0040 U	0.0040 U	0.0040 U	0.0040 U	0.0899	0.0856	0.438	0.0138	0.0021 J	0.0040 U	0.0040 U	0.016 U	0.016 U	0.0080 U	0.0080 U	0.0080 U
MW002423	0.0538	0.0135	0.0673	0.0487	0.0968	0.162	0.0336	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.16	0.122	0.59	0.0075 J	0.0042 U	0.0042 U	0.0042 U	0.017 U	0.017 U	0.0083 U	0.0083 U	0.0083 U
MW090B01	0.0785	0.112	0.1905	0.0438	0.115	0.151	0.0354	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.106	0.098	0.473	0.0153	0.0042 U	0.0042 U	0.0042 U	0.017 U	0.017 U	0.0083 U	0.0083 U	0.0083 U
MW090B02	0.0613	0.0955	0.1568	0.0331	0.0862	0.115	0.0259	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.075	0.0712	0.38	0.0122	0.0042 U	0.0042 U	0.0042 U	0.017 U	0.017 U	0.0083 U	0.0057 J	0.0083 U
MW090B03	0.075	0.183	0.258	0.0398	0.112	0.132	0.0324	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0763	0.0916	0.501	0.0167	0.0038 U	0.0038 U	0.0038 U	0.015 U	0.015 U	0.0077 U	0.0077 U	0.0077 U
MW090B04	0.108	0.306	0.414	0.0543	0.162	0.19	0.046	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0898	0.11	0.716	0.0261	0.0038 U	0.0038 U	0.0038 U	0.015 U	0.015 U	0.0077 U	0.0049 J	0.0077 U
MW090B05	0.149	0.565	0.714	0.0759	0.21	0.258	0.069	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.121	0.125	0.916	0.0363	0.0042 U	0.0042 U	0.0042 U	0.017 U	0.017 U	0.0083 U	0.0130 J	0.0083 U
MW090B06	0.156	0.655	0.811	0.0779	0.216	0.264	0.072	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.125	0.128	0.953	0.0407	0.0042 U	0.0042 U	0.0042 U	0.017 U	0.017 U	0.0083 U	0.0163 J	0.0083 U
MW090B07	0.171	0.622	0.793	0.0841	0.237	0.293	0.0767	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	U.0042	0.134	0.135	0.981	0.0434	0.0042 U	0.0042 U	0.0042 U	0.017 U	0.017 U	0.0083 U	0.0204	0.0083 U
MW090B08	0.135	0.352	0.487	0.076	0.232	0.296	0.0691	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.123	0.148	0.95	0.0325	0.0042 U	0.0042 U	0.0042 U	0.017 U	0.017 U	0.0083 U	0.0066 J	0.0083 U

How Can We Effectively Communicate PFAS Results?

Radial Diagram and Stacked Bar Maps

- Identify chemical & location exceedances 1.
- Plume delineation 2.
- Short vs long-chain 3.
- Precursor transformations 4.
- Flow path attenuation 5.
- Site vs background 6.
- TOP assay results 7.
- **Remediation monitoring** 8.
- Source differentiation forensics 9.

PFCAs

PFNA

PFOA

PFHpA

PFHxA

PFPeA

PFBA

100%-

80%-

60%-----

40%-

20%-

AFFF-10

(0.03)

AFFF-8 (0.05)

2

AFFF-3

(0.35)

AFFF-6 (2.3)

5000

(3.6)

ITRC PFAS Guidance: Radial Diagram Examples

Case Study Outline

- **1 PFAS site characterization (SD AFB)**
- **2 PFAS remediation (Navy site)**
 - PlumeStop[®] barrier

3 Chlorinated solvent remediation: (Regenesis site, MI)

- 3-D Microemulsion® (3Dme)
- PlumeStop[®], Hydrogen Releasing Compound[™] (HRC), Bio-Dechlor Inoculum[®] Plus (BDI+)
- 4 Redox zone delineation (MI AFB, MI Landfill)
- **5** Visual PFAS[™] Overview

PFAS Site Characterization South Dakota AFB

Section 1

In Submittal to Remediation Journal

DRAFT - In Submittal to the Remediation Journal

Visualizing PFAS Trends at a South Dakota AFFF-Impacted Site

By Grant R. Carey^{1,2}, Rita K. Krebs³, Gabriel T. Carey¹, Mia Rebeiro-Tunstall¹, Jeremiah Duncan⁴, Gillian N. Carey¹, and Kiera Rooney¹

¹ Porewater Solutions, Ottawa, Ontario
 ² Carleton University, Ottawa, Ontario
 ³ Air Force Civil Engineer Center (AFCEC), Ellsworth AFB, South Dakota
 ⁴ GZA GeeEnvironmental, Inc., New Hampshire

Corresponding Author: Grant Carey (gcarey@porewater.com; 2958 Barlow Crescent, Ottawa, Ontario, Canada K0A 1T0; 613-832-1737)

ABSTRACT: Various visualization alternatives are demonstrated for evaluating PFAS trends at an AFFF-impacted site in South Dakota, including the use of radial diagrams, stacked bar maps, and pie charts. The purpose of this study was to compare and contrast visualization methods which may be used for PFAS site characterization or forensic assessments. PFAS groundwater concentration trends are first visualized based on site-wide wells with maximum PEOS+PEOA concentrations in AFEE source areas. Then a more detailed analysis of trends, including the potential for precursor transformations to PFAAs, is presented for a smaller portion of the site where former fire training activities were conducted. The advantages of using radial diagram reference series such as maximum source or background concentrations to better illustrate changes along a flow path are discussed. The benefits of including symbols on radial diagram maps to illustrate where PFAS are non-detect or are in exceedance of site cleanup criteria, particularly in support of a PFAS plume delineation, are demonstrated Radial diagrams and stacked bar maps are used to illustrate the relative proportion of sulfonates and carboxylates in groundwater, which may help to identify relative contributions of AFFF products derived from ECF versus telomerization manufacturing processes. The benefit of using select PFAS ratios on radial diagram axes to support a combined assessment of precursor transformation and PFAA production along a flow path is demonstrated. Stacked bar maps are shown to have significant advantages over pie charts for PFAS forensic analyses.

Data Availability Statement: Data sharing not applicable – no new data generated. Data were derived from existing public domain resources, including: McGuire et al., 2014 (https://pubmed.ncbi.nlm.nih.gov/24866261/), and Aerostar, 2019 (https://ar.cce.af.mil/ViewPdf?id=604149&token=I2208V8VBb6zxQzqUdjuogg5xV418wJ yfFi5FbJJMI%3D).

Keywords: PFAS, visualization, forensic, radial diagram, stacked bar, AFFF

1. INTRODUCTION

Per- and polyfluoroalkyl substances (PFAS) are widespread in the environment, and some PFAS are both resistant to degradation and are toxic at very low concentrations. PFAS that are regulated due to toxicity in groundwater and drinking water are typically as

gcarey@porewater.com

Rita Krebs

Jeremiah Duncan, Ph.D.

Gabriel Carey Mia Rebeiro-Tunstall Gillian Carey Kiera Rooney

AFFF Source Areas

AFFF Area	Location
AFFF-1	Current FTA
AFFF-2a AFFF-2b	70, 80, 90 Rows; and Outfall #3
AFFF-3	Building 618
AFFF-4	Former Fire Station (Building 7506)
AFFF-5	B-52 Crash (1972)
AFFF-6	B-1 Crash (1988)
AFFF-7	Delta Taxiway West Crash (2000)
AFFF-8	Marten Crash (2006)
AFFF-9	Crash 4 (2001)
AFFF-10	Wastewater Treatment Plant
AFFF-11	Spray Nozzle Test Area
AFFF-12	Building 88240
OU-1	Former Fire Training Area

Impacts from AFFF Products

ITRC AFFF Fact Sheet (2024)

ITRC has developed a series of fact sheets that summarizes recent science and emerging technologies regarding PFAS. The information

in this and other PEAS fact sheets is more fully

scribed in the ITRC PFAS Technical and

Regulatory Guidance Document (Guida

This fact sheet outlines methods to properly

nanage, and dispose of AFFF to limit pot

· Best Management Practices for AFFF u

Regulations Affecting Sale and Use

Foam Research and Development

identify handle store capture collect

environmental impacts, and includes:

Definition of AFFF

1 Introduction

Aqueous film-forming foam (AFFF) is a highly effective firefighting product intended for fighting high-hazard flammable liquid fires. AFFF products are synthesized by combining hydrocarbon foaming agents with fluorinated surfactants to achieve a product that has been used at military installations, civilian airports, petroleum refineries, bulk storage facilities, and chemical manufacturing plants (Hu et al. 2016; CONCAWE 2016).

This fact sheet targets local, state, and federal regulators and tribes in environmental. health and safety roles, as well as AFFF users at municipalities, airports, and industrial facilities, and is not intended to replace manufacturer specifications or industry guidance for AFFF use. The information provided is a high-level summary on AFFF use, the associated hazards, and how to reduce and eliminate potential harm to human health and the environment. Additional information is available in the Guidance Document.

2 What is AFFF?

Class B firefighting foams are commercial surfactant solutions that are designed and used to combat Class B flammable fuel fires. For the purpose of this fact sheet, Class B foams can be divided into two hoad categories: fluorinated foams that contain PFAS and fluorine-free foams (F3) that do not contain PFAS.

There are six groups of Class B foams that contain PFAS and four groups of Class B foams that do not. Figure 1 illustrates all categories of Class B foams. This fact sheet focuses on AFFF because it is the most widely used and available type of Class B foam.

Product differentiation clues:

- PFSAs vs PFCAs
- Long-chain vs short-chain PFCAs

ECF: Electrochemical Fluorination FT: Fluorotelomerization

Lower PFSAs

PFSAs Radial Diagram: Near-Source Well

GW-04 PFBS (ug/L) 1000 100 10 1 0.1 **Precursor** $FHxSA \rightarrow PFHxS$ 0.01 0.01 0.1 1 10 100 1000 PFHxS (ug/L) FHxSA (ug/L) 1000 100 10 1 0.1 0.01 0.01 0.1 1 10 100 1000 PFOS (ug/L)

Ra	idial Diagram Construction
1.	Precursor and PFSAs
	Transformation evidence
	 PFHxS is a daughter product
2.	Uniform axis ranges
	 Identify chemicals with high/low C
3.	Log scale
	 Each tick mark interval = 10x change
	i.e., 1 OoM
	 Most PFAS sites vary by Orders of Magnitude
4.	Minimize tick mark intervals
	 Min range = 0.01 ug/L

PFSAs Radial Diagram: Near-Source Well

PFSAs Radial Diagram: Near-Source Well

OoM: Orders of Magnitude

PFSAs Radial Diagram: Trends Along Flow Path

Reference: McGuire et al. (2014)

PFSAs Radial Diagram: Trends Along Flow Path

AFFF Source Areas: PFAS of Concern

Site Inspection (SI) Results

AFFF Source Areas: PFAS of Concern

Site Inspection (SI) Results

Stacked Bar Chart Example

Stacked Bar Chart Example

Source Area Short vs Long-Chain PFCAs

Stacked Bar vs Pie Chart Maps

Advantages of Stacked Bar Maps:

- Estimating proportions
- More intuitive (shortto long-chain)
- Comparing between wells

OU-1 (Former FTA): 6:2 FtS Ratios

Precursor Transformation Pathways

OU-1 (Former FTA): 6:2 FtS Ratios

+ DO Infusion Well

OU-1 (Former FTA): TOP Assay Results

PFAS Remediation (PlumeStop[®]) Navy Site

 Δ

Acknowledgements

APTIM **Dr. Paul Hatzinger, Graig Lavorgna, David Lippincott** APTIM

Dr. Anthony Danko NAVFAC EXWC

Dr. Brent Sleep University of Toronto

△ Non-detect
 MCL exceedance
 Pre-injection (Baseline)
 Post-injection (3 months)
 Post-injection (24 months)

PMW-4S

PMW-3S PMW-4S

Michigan Case Study Regenesis Remediation

Section 3

www.Regenesis.com

Former Michigan Industrial Site Treated Using Combined Remedy Approach

Acknowledgements

Douglas Davis, Dr. Paul Erickson

Dora Taggart

Site Setting

CAH Radial Diagram (MW-230)

CAH Radial Diagram Map

Unique Redox Radial Diagram Method

Section 4

Biogeochemical Processes

TCE Degradation by Redox Zone

Redox Radial Diagrams: MI Superfund Site

Redox Diagram: Electron Acceptors (EA)

Redox Diagram: Metabolic By-Products (MB)

Redox Diagram: Aerobic (Background)

Redox Diagram: Strongly Anaerobic at Well

Redox Zone Transition

Radial diagrams are ideal for plotting relationships between redox indicators at each monitoring well.

Location	DO (mg/L)	Nitrate (mg/L)	Mn(II) (mg/L)	Fe(II) (mg/L)	Sulfate (mg/L)	Methane (mg/L)
Aerobic	5	10	<0.01	<0.1	25	<0.001
Slightly Anaerobic	0.3	3	0.1	0.3	25	<0.001
Moderately Anaerobic	0.1	<0.01	2	5	18	0.01
Strongly Anaerobic	0.1	<0.01	2	5	2	0.7

Redox Radial Diagram Map (Regenesis site)

Redox Zone Case Study: Wurtsmith AFB, MI

Charleston Naval Weapons Station, South Carolina

Redox Indicators

- 7 wells
- 6 redox indicators
- 12 events

➡ 500 data points

Charleston NWS Relative Redox Area by Zone

RRA = Relative Redox Area

Redox Zone Case Study: Charlseton, SC

	Location	Days Since Injection	Sample Date	Dissolved Oxygen	Nitrate (mg/L)	Manganese (mg/L)	Dissolved Iron (mg/L)	Sulfate (mg/L)	Methan (ug/L)
_	17001 00	5/13/2004	0/04/04	(mg/L)					
_	17PSI-02	-43	3/31/04	1.48	<0.5	0.390	33	91.5	53.2
_	17PSI-02	20	6/2/04	0.39	<0.5	0.570	150	18.0	47.4
_	17PSI-02	111	9/1/04	0.42	<0.5	0.510	160	<0.5	42.6
_	17PSI-02	188	11/1//04	0.14	<0.5	0.530	210	<0.5	256.3
_	17PSI-02	2/1	2/8/05	0.44	1.0/1.0	0.550	210	0.95	429.6
_	17PSI-02	3//	5/25/05	0.19	< 0.5	0.660	210	< 0.5	1135
-	17PSI-02	468	8/24/05	0.35	< 0.5	0.630	180	< 0.5	812.8
_	17PSI-02	684	3/28/06	0.68	<0.5	0.590	210	<0.5	1933.2
_	17PSI-02	605	9/25/06	0.62	<0.5	0.530	60	<0.5	1366.9
_	17PSI-02	951	12/20/06	NM	<0.5	0.100	6.9	28.3	2135.8
_	17PSI-02	1062	4/10/07	0.36	<0.5	0.300	0.6	32.8/35.8	9433.9
_	17PSI-02	1252	10/17/07	0.80	<0.5	0.230	1.5	<0.5	5269.8
_	17PSI-07	-43	3/31/04	3.93	<0.5	0.370	24	102.5	40.7
_	17PSI-07	20	6/2/04	0.60	<0.5	0.710	180	1.8	53.7
_	17PSI-07	100	9/1/04	0.13	<0.5	0.620	300	0.5	20.0
-	17091-07	271	2/9/06	0.09	<0.5	0.740	240	<0.5	150.3
-	17PSI-07	277	2/0/03	0.48	< 0.5	0.790	320	< 0.5	1460.4
-	17PSI-07	3//	5/25/05	0.20	< 0.5	0.010	310	< 0.5	1409.4
_	17PSI-07	400	0/24/05	0.39	< 0.5	0.710	200	< 0.5	1010.0
-	47001-07	004	3/20/00	0.01	<0.5	0.000	420	<0.5	2121.1
-	17051-07	000	9/25/06	1.01	<0.5	0.620	320	<0.5	2004.9
-	17PSI-07	1062	12/20/00	0.02	<0.5	0.750	220	<0.5/0.7	4096.0
-	17PSI-07	1252	10/17/07	1.00	<0.5	0.700	120	<0.5	5377.2
-	17091-07	12.02	2/21/04	1.00	<0.5	0.720	20	=0.3 E0.7	25.5
_	17PSI-10	-43	6/2/04	4.05	<0.5	0.400	29	53 5/52 6	16.0
-	17091-10	111	0/2/04	0.47	<0.5	0.320	130	0.7	20.1
_	17PSI-10	188	3/1/04	0.20	<0.5	0.700	100	<0.5	20.1
_	17PSI-10	271	2/8/05	0.11	<0.5	0.830	220	<0.5	851.0
	17PSI-10	377	5/25/05	0.41	< 0.5	0.000	220	< 0.5	2626.4
_	17PSI=10	468	8/24/05	0.32	< 0.5	1 200	190	< 0.5	1884.3
_	17PSI=10	684	3/28/06	0.56	<0.5	0.640	240	<0.5	2152.8
_	17PSI-10	866	9/26/06	0.52	<0.5	0.720	210	<0.5	4147.0
	17PSI-10	951	12/20/06	0.74	<0.5	0.590	170	0.7	5972.8
	17PSI-10	1062	4/10/07	0.51	< 0.5	0.750	200	< 0.5	9990.4
	17PSI-10	1252	10/17/07	0.80	< 0.5	0.510	40	< 0.5/0.6	6651.4
	17PSI-13	-43	3/31/04	4.66	< 0.5	0.610	53	102.6	13.4
	17PSI-13	20	6/2/04	0.74	< 0.5	0.920	120	82.6	17.5
	17PSI-13	111	9/1/04	0.19	< 0.5	0.840	200	< 0.5	14.3
	17PSI-13	187	11/16/04	0.10	<0.5/<0.5	0.920	210	<0.5/<0.5	78.7
	17PSI-13	271	2/8/05	0.39	< 0.5	0.880	190	< 0.5	534.5
	17PSI-13	376	5/24/05	0.29	<0.5/<0.5	0.800	160	<0.5/<0.5	3441.6
	17PSI-13	468	8/24/05	0.35	< 0.5	0.990	160	< 0.5	2550.7
	17PSI-13	684	3/28/06	NA	<0.5	0.880	260	<0.5	1105.7
	17PSI-13	866	9/26/06	0.56	<0.5	0.830	180	<0.5	5069.7
	17PSI-13	951	12/20/06	0.81	<0.5	0.850	260	1.1	5540.8
_	17PSI-13	1062	4/10/07	0.46	<0.5	0.840	280	<0.5	7879.1
	17PSI-13	1252	10/17/07	0.60	<0.5	0.570	90	<0.5	9099.5
_	17PS-01	-42	4/1/04	0.67	<0.5	0.630	78	65.5	27.2
_	17PS-01	20	6/2/04	1.14	<0.5	0.720	120	44.1/44.6	25.8
	17PS-01	111	9/1/04	0.15	< 0.5	0.540	110	15.3	37.7
_	17PS-01	187	11/16/04	0.17	<0.5	0.780	130	23.4	33.1
_	17PS-01	271	2/8/05	0.23	<0.5	0.680	150	27.9	145.0
_	17PS-01	377	5/25/05	0.34	< 0.5	0.690	130	20.3	231.9
_	17PS-01	468	8/24/05	0.33	< 0.5	0.570	190	21.6	92.2
_	17PS-01	685	3/29/06	0.49	<0.5	0.490	210	30.9	261.2
_	17PS-01	866	9/26/06	0.81	<0.5	0.690	110	<0.5	1232.6
H	17PS-01	951	12/20/06	NA 0.70	<0.5	0.190	1.2	1.4	/415.3
_	17PS-01	1062	4/10/07	0.72	<0.5	0.050	1.0	<0.5	11308.5
H	17PS-01	1252	10/17/07	0.20	1.3	0.230	2.1	0.5	//59.2
_	17PS-02	-42	4/1/04	1.50	<0.5	0.560	50	58	30.8
H	17PS-02	20	0/2/04	3.30	<0.5	0.740	470	5.4	30.6
_	17P3-02	107	9/1/04	0.14	<0.5	0.570	170	15.0	30.7
-	17PS-02	18/	11/16/04	0.16	<0.5	0.590	150	2.8	66.0
_	17PS-02	2/1	2/8/05	0.20	<0.5/<0.5	0.520	120	10.0	1144.8
-	17PS-02	3//	5/25/05	0.47	< 0.5	0.660	92	0.7	11/0.5
-	17PS-02	400	0/24/05	0.32	< 0.5	0.540	130	20.0	2620.2
H	1709.02	000	0/26/00	0.00	~0.5	0.000	170	14	2122.3
H	17PS-02	000 Q51	3/20/00	0.40 NA	<0.5	0.020	1.10	2.0	2133.3 Q880 F
H	17PS-02	1062	4/10/07	0.75	<0.5	0.100	12.0	<0.5/0.57	880F 0
H	17PS-02	1252	4/10/07	0.75	~0.0 1.1	0.200	0.41	<0.5/	01/18 4
H	17PS-02	-42	4/1/04	0.40	<0.5	0.075	69	77.5	36.0
H	17PS-03	20	6/2/04	1.92	<0.5	0.000	110	10.0	50.0
H	17PS-03	111	9/1/04	0.14	<0.5	0.010	130	<0.5	172.2
H	17PS-03	187	11/16/04	0.14	<0.5/<0.5	0.400	200	0.5/<0.5	2062.5
F	17PS-03	271	2/8/05	0.10	<0.5	0.570	180	<0.5	7737.5
F	17PS-03	377	5/25/05	0.25	< 0.5	0.200	180	< 0.5	4425.3
F	17PS-03	468	8/24/05	0.37	< 0.5	0.470	190	2.10	3136.5
F	17PS-03	685	3/29/06	0.44	<0.5	0.430	370	16	3522.2
H	17PS-03	866	9/26/06	0.57	<0.5	0.580	96	1.0	4852.4
H	17PS-03	951	12/20/06	NA	<0.5	0,170	11	9.6/9.5	9839.1
F	17PS-03	1062	4/10/07	0.68	<0.5	0.055	0.38	5.0	4281.3
	17PS-03	1252	10/17/07	0.40	1.3	0.120	0.58	<0.5	10127.1

Days Since

Average RRA versus time in Pilot Test Area (IWs)

RRA: Relative Redox Area

Benefits of Radial Diagram & Stacked Bar Maps

- Powerful tool for visualizing chemical inter-relationships
 - Parent/daughters, short-chain/long-chain, PFSAs vs PFCAs
 - One radial diagram map may replace 5-10 chemical maps
- Visualize OoM reductions along flow path, and over time
 - Natural and enhanced remediation trends
- Quickly show where chemicals exceed cleanup criteria
- Unique method for redox zone delineation

Visual PFASTM For Site Characterization & Forensics

To learn more about a Visual PFAS[™] site license:

https://waterservicestech.com/products/visual-pfas/

https://porewater.com

Questions?

Visual PFAS[™]

Grant R. Carey, Ph.D.

Porewater Solutions gcarey@porewater.com Phone: 613-890-2286

www.porewater.com/PFAS.html

Extra Slides

MW-230 CAH Trends Over Time

In-Situ Remediation Model (ISR Model)

- Originally developed in 1998 as BioRedox-MT3DMS
- Field and research projects since 2017
- PFAS-related functionality
 - ✓ PFAS adsorption to CAC
 - ✓ Kinetic sorption
 - ✓ Competitive adsorption
 - ✓ CAC aging
 - ✓ Colloid transport
 - ✓ Branched decay chains

Expertise • Experience • Innovation

U.S. DoD SERDP/ESTCP Project Involvement

ESTCP ER21-3959

An Investigation of Factors Affecting *In Situ* **PFAS Immobilization by Activated Carbon**

Preventing the Migration of PFAS in Groundwater

Validation of Colloidal Activated Carbon for

ESTCP ER21-1070

Hydraulic, Chemical, and Microbiological Effects of *In Situ* Activated **Carbon Sorptive Barrier** for PFAS Remediation in Coastal Sites

ESTCP ER25-8483

Two PFAS Remediation Models for Understanding and Managing PFAS in the Saturated Zone

SERDP-ESTCP e-learning Modules: PFAS In-Situ Remediation