Visualizing Biodegradation Zones

1

Main Challenge with MNA and EISB, or PFAS

Example of Redox Zone Delineation

Enhanced In-Situ Bioremediation (EISB) Pilot Test

PMW-113(UB) TCE Concentration (ug/L)

Full-Scale Design

Attenuation Concepts

Section 1.1

Source Attenuation: C ver time Plume Attenuation: C over distance

Natural Attenuation Mechanisms

- There are two main processes by which natural attenuation may be protective at a site:
 - 1. Source depletion concentrations decline with time;
 - 2. Plume attenuation concentrations decline along the flow path downgradient from the source zone.
- <u>Plume attenuation</u> is most significant when <u>biodegradation</u> is occurring along the flow path. Other processes which influence plume attenuation include dispersion, abiotic degradation, and sorption when the plume is still advancing.

Mass Discharge (Source Strength) Trends

Fresh Source

Modified from Parker et al., 2003

Mass discharge from source zone (kg/y)

Mass Discharge (Source Strength) Trends

Aged Source

NAPL Depletion Model (NDM)

Estimating Timeframes for Natural and Enhanced NAPL Depletion

Free software and 4-hour short course download: www.porewater.com

Case Study: Beth Parker et al. (2003) CT Site

DNAPL Sub-Zones

Source Depletion: Modeled vs. Estimated Half-Life

Md = Mass discharge

Biogeochemical Processes

Plume Biogeochemical Processes

- Typical concentration trends during biodegradation
 - Electron acceptors (oxygen, nitrate, sulfate) decline
 - At some sites, sulfate may increase due to dissolution of sulfate-bearing minerals during geochemical changes associated with biodegradation. Sulfate reduction is typically still occurring, even with an increase in sulfate concentrations.
 - Metabolic byproducts (manganese, iron, methane) increase
 - Naturally-occurring arsenic may be temporarily co-dissolved into groundwater with iron. (This arsenic is typically sorbed into iron coatings on sand grains in aerobic aquifers.) Arsenic will later co-precipitate with iron when mixed with oxygen.

TCE Mean Degradation Half-Life by Redox Zone

TCE Degradation Half-Life by Redox Zone

Redox Zone Mass Balance at Plattsburgh Air Force Base

Oxygen Nitrate Iron Sulfate $CO_2 \rightarrow CH_4$

Modeled using In-Situ Remediation (ISR-MT3DMS)

Modeled Mass Balance by Redox Zone (t = 40 years)

Oxidation (rapid, NO Daughters)

Reductive Dechlorination (moderate, Daughters, need ED)

Reductive Dechlorination (slow, Daughters, need ED)

Cometabolism (rapid if substrate present, NO Daughters)

Redox-Dependent Biodegradability

- Parent VOCs (PCE, TCE, 111-TCA)
 - Aerobic cometabolism when chemicals like methane or toluene are present to stimulate rapid degradation
 - Otherwise need moderately or strongly anaerobic conditions
- VOC Daughter products (e.g. 12-DCE, VC, 11-DCA, 11-DCE)
 - May undergo oxidation (without daughters) under aerobic or moderately anaerobic conditions
 - Undergo reductive dichlorination under moderate to strongly anaerobic conditions
- PFAS precursors degrade to PFCAs and PFSAs mainly under aerobic conditions

Natural and Enhanced Degradation

- Analysis requires:
 - Delineation of major redox zones
 - Illustration of parent to daughter product ratios at wells
 - Illustration of trends along flowpath
 - Decreasing parent and increasing daughter products?
 - Illustration of trends over time across the entire site
- Applicable to natural and enhanced attenuation

Redox Radial Diagrams

Section 1.2

Redox Diagram: Electron Acceptors (EA)

Redox Diagram: Metabolic By-Products (MB)

Redox Diagram: Aerobic (Background)

Redox Diagram: Strongly Anaerobic at Well

Redox Zone Transition

VOC Radial Diagrams

Section 1.3

VOC Radial Diagram: Source Depletion

Plattsburgh Air Force Base: Plume Attenuation

Wurtsmith Air Force Base, Michigan

Redox Indicators

- 20 wells
- 5 indicators

> 100 data points

ES&T, 1996, 30: 3565-3569

Comparison of E_h and H_2 Measurements for Delineating Redox Processes in a Contaminated Aquifer

FRANCIS H. CHAPELLE,*.[†] SHERIDAN K. HAACK,[†] PETER ADRIAENS,[§] MARK A. HENRY,[#] AND PAUL M. BRADLEY[†] U.S. Geological Survey, 720 Gracern Road, Suite 129, Columbia, South Carolina 29210-7651, U.S. Geological Survey, 6520 Mercantile Way, Suite 5, Lansing, Michigan 48911, Department of Civil & Environmental Engineering. University of Michigan, 181 EWRE Building, Ann Arbor, Michigan 48109-2125, and National Center for Integrated Bioremediation Research, 4140 East California Street, Oscoda, Michigan 48750

Redox Radial Diagrams

Relative Redox Area Contours

Charleston Naval Weapons Station, South Carolina

Redox Indicators

- 7 wells
- 6 redox indicators
- 12 events

➡ 500 data points

Redox Indicator Event 1: 2004-04-01 (Pre-Injection)

Redox Indicators Event 8: 2006-03-29

Redox Indicators Event 12: 2007-10-17

Relative Redox Area versus Time

Redox Zone	RRA (%)
Aerobic	78-100
NO ₃	62-78
Mn(II)	53-62
Fe(II)	35-53
SO ₄	20-35
CH ₄	≤20

Charleston Naval Weapons Station

Location	Days Since Injection	Sample Date	Dissolved Oxygen	Nitrate (mg/L)	Manganese (mg/L)	Dissolved Iron (mg/L)	Sulfate (mg/L)	Methane (µg/L)
17PSI-02	-/13/2004	3/31/04	1/8	<0.5	0.300	33	01.5	53.2
17PSI=02	20	6/2/04	0.39	<0.5	0.570	150	18.0	47.4
17PSI=02	111	9/1/04	0.42	<0.5	0.510	160	<0.5	42.6
17PSI-02	188	11/17/04	0.12	<0.5	0.530	210	<0.5	256.3
17PSI-02	271	2/8/05	0.44	1.0/1.0	0.550	210	0.95	429.6
17PSI-02	377	5/25/05	0.19	< 0.5	0.660	210	< 0.5	1135
17PSI-02	468	8/24/05	0.35	< 0.5	0.630	180	< 0.5	812.8
17PSI-02	684	3/28/06	0.68	< 0.5	0.590	210	< 0.5	1933.2
17PSI-02	865	9/25/06	0.62	< 0.5	0.530	60	< 0.5	1366.9
17PSI-02	951	12/20/06	NM	< 0.5	0.100	6.9	28.3	2135.8
17PSI-02	1062	4/10/07	0.36	<0.5	0.300	0.6	32.8/35.8	9433.9
17PSI-02	1252	10/17/07	0.80	<0.5	0.230	1.5	<0.5	5269.8
17PSI-07	-43	3/31/04	3.93	<0.5	0.370	24	102.5	40.7
17PSI-07	20	6/2/04	0.60	< 0.5	0.710	180	1.8	53.7
17PSI-07	111	9/1/04	0.13	< 0.5	0.820	300	0.5	26.6
17PSI-07	188	11/17/04	0.09	< 0.5	0.740	240	< 0.5	156.3
17PSI-07	271	2/8/05	0.48	<0.5	0.790	320	<0.5	151.7
17PSI-07	377	5/25/05	0.26	< 0.5	0.810	310	< 0.5	1469.4
17PSI-07	468	8/24/05	0.39	< 0.5	0.710	260	< 0.5	1816.0
17PSI-07	684	3/28/06	0.61	<0.5	0.530	420	<0.5	2121.1
17PSI-07	865	9/25/06	1.81	< 0.5	0.620	320	< 0.5	2684.9
17PSI-07	951	12/20/06	0.62	< 0.5	0.750	220	<0.5/0.7	5509.0
17PSI-07	1062	4/10/07	0.98	< 0.5	0.700	250	<0.5	4086.0
1/PSI-07	1252	10/17/07	1.00	<0.5	0.720	120	<0.5	53/7.2
1/PSI-10	-43	3/31/04	4.05	<0.5	0.400	29	58.7	35.5
1/PSI-10	20	6/2/04	0.47	< 0.5	0.920	150	53.5/52.6	16.9
17PSI-10	111	9/1/04	0.26	<0.5	0.700	130	0.7	20.1
1/PSI-10	188	11/1//04	0.14	<0.5	0.940	190	<0.5	27.2
17PSI-10	2/1	2/8/05	0.41	<0.5	0.830	220	<0.5	851.9
1/PSI-10	3//	5/25/05	0.32	< 0.5	0.800	220	< 0.5	2020.4
17PSI-10	468	8/24/05	0.45	< 0.5	1.200	190	< 0.5	1884.3
17PSI-10	004	3/20/00	0.50	<0.5	0.640	240	<0.5	2152.0
17PSI-10	866	9/26/06	0.52	<0.5	0.720	210	<0.5	4147.0
17PSI-10	951	12/20/06	0.74	<0.5	0.590	170	0.7	5972.8
17PSI-10	1002	4/10/07	0.51	<0.5	0.750	200	<0.5	9990.4
17PSI-10	1252	10/17/07	0.60	<0.5	0.510	40	<0.5/0.6	42.4
17PSI-13	-43	5/31/04	4.00	<0.5	0.010	120	102.0	13.4
17091-13	20	0/2/04	0.14	<0.5	0.920	200	<0.5	14.3
17P3I-13	407	9/1/04	0.19	<0.5 +0.5/+0.5	0.040	200	<0.5	14.3
17PSI-13	271	2/8/05	0.10	<0.5/<0.5	0.920	210	<0.5	534.5
17PSI-13	376	5/24/05	0.00	<0.5	0.000	160	<0.5	3441.6
17PSI=13	468	8/24/05	0.25	< 0.5	0.000	160	< 0.5	2550.7
17PSI=13	684	3/28/06	NA	<0.5	0.880	260	<0.5	1105.7
17PSI-13	866	9/26/06	0.56	<0.5	0.830	180	<0.5	5069.7
17PSI=13	951	12/20/06	0.81	<0.5	0.850	260	11	5540.8
17PSI=13	1062	4/10/07	0.46	<0.5	0.840	280	<0.5	7879 1
17PSI-13	1252	10/17/07	0.60	<0.5	0.570	90	<0.5	9099.5
17PS-01	-42	4/1/04	0.67	< 0.5	0.630	78	65.5	27.2
17PS-01	20	6/2/04	1.14	< 0.5	0.720	120	44.1/44.6	25.8
17PS-01	111	9/1/04	0.15	< 0.5	0.540	110	15.3	37.7
17PS-01	187	11/16/04	0.17	< 0.5	0.780	130	23.4	33.1
17PS-01	271	2/8/05	0.23	< 0.5	0.680	150	27.9	145.0
17PS-01	377	5/25/05	0.34	< 0.5	0.690	130	20.3	231.9
17PS-01	468	8/24/05	0.33	< 0.5	0.570	190	21.6	92.2
17PS-01	685	3/29/06	0.49	< 0.5	0.490	210	30.9	261.2
17PS-01	866	9/26/06	0.81	<0.5	0.690	110	<0.5	1232.6
17PS-01	951	12/20/06	NA	< 0.5	0.190	7.2	1.4	7415.3
17PS-01	1062	4/10/07	0.72	< 0.5	0.050	1.0	< 0.5	11308.5
17PS-01	1252	10/17/07	0.20	1.3	0.230	2.1	0.5	7759.2
17PS-02	-42	4/1/04	1.50	<0.5	0.560	50	58	30.8
17PS-02	20	6/2/04	3.36	< 0.5	0.740	81	5.4	30.6
17PS-02	111	9/1/04	0.14	< 0.5	0.570	170	15.0	36.7
17PS-02	187	11/16/04	0.16	<0.5	0.590	150	2.8	66.0
17PS-02	271	2/8/05	0.20	<0.5/<0.5	0.520	120	10.0	1144.8
17PS-02	377	5/25/05	0.47	< 0.5	0.660	92	6.7	1176.5
17PS-02	468	8/24/05	0.32	< 0.5	0.540	150	20.8	1681.8
17PS-02	685	3/29/06	0.50	<0.5	0.550	130	14	3639.3
17PS-02	866	9/26/06	0.48	< 0.5	0.620	170	2.8	2133.3
17PS-02	951	12/20/06	NA	< 0.5	0.180	1.10	9.6	9880.6
1/PS-02	1062	4/10/07	0.75	<0.5	0.260	12.0	<0.5/0.57	8896.9
1/PS-02	1252	10/17/07	0.40	1.1	0.075	0.41	<0.5	9148.4
1/PS-03	-42	4/1/04	0.40	<0.5	0.680	69	/7.5	36.0
17PS-03	20	6/2/04	1.22	< 0.5	0.810	110	10.0	50.7
1/PS-03	111	9/1/04	0.14	<0.5	0.460	130	<0.5	1/3.3
1/PS-03	18/	11/16/04	0.18	<0.5/<0.5	0.800	200	0.5/<0.5	2062.5
1/PS-03	271	2/8/05	0.25	< 0.5	0.570	180	<0.5	//37.5
1/PS-03	3//	5/25/05	0.31	< 0.5	0.700	180	< 0.5	4425.3
1/PS-03	468	8/24/05	0.37	< 0.5	0.470	190	2.10	3136.5
1/PS-03	685	3/29/06	0.44	<0.5	0.430	3/0	1.6	3522.2
17PS-03	800	9/20/00	0.57	<0.5	0.580	90	1.9	4852.4
17PS-03	951	12/20/06	N/A 0.68	<0.5	0.1/0	1.1	9.6/9.5	9839.1
1705-03	1062	4/10/07	0.40	×U.5	0.055	0.38	5.0	4201.3

Average RRA versus time in Pilot Test Area (IWs)

Relative Redox Area Findings

• CHECK RRA RESULTS – Do they make sense?

- Single metric that integrates trends for 5-6 redox indicators, relative to aerobic conditions
- Good predictor of dominant redox processes
- Useful for contouring key redox zones (e.g. aerobic, moderately anaerobic, and strongly anaerobic)
- Higher uncertainty at RRA transition points
- RRA limitations:
 - Downgradient transport of indicators (e.g. methane)
 - Concomitant redox processes

Potential RRA Zones for delineation:

- 1. Aerobic
- 2. Nitrate-reducing
- 3. Manganese / Iron-reducing
- 4. Sulfate-reducing / Methanogenesis

PFAS Radial Diagrams

Section 1.4

PFAS at Ellsworth Air Force Base

42

PFCAs

PFSAs

Concentrations in ug/L.

Key Functionality for Radial Diagrams

- Axes can increase in concentration away from, or towards the origin of the radial diagram
- Each axis has option of log or arithmetic scale
- Multiple events and reference data series

e.g. background redox indicators, or source zone VOCs

- Option to shade in one or more data series, different line colors
- Symbols to represent non-detects, and/or MCL exceedances

FREE Visual Bio Software

© 2006-2017 Porewater Solutions

Visual Bio Software

Text Input Files

ſ	RD_Properties.dat - Notepad -						×		
Eil	e <u>E</u> dit	Format	View	<u>H</u> elp					
P/	AFB -	Redox							
		5					'Line 2: r	RD Axes	
	2 180	150	2	0.1	10.	1 3	-1. 'Line 3.1	: DO ScaleFlag, angle, chemID, unitID, Min, Max, Direction, nMajorTicks, MCL	
	2 108	3 151	2	0.1	10.	1 3	-1. 'Line 3.2	: NO3 ScaleFlag, angle, chemID, unitID, Min, Max, Direction, nMajorTicks, MCL	
	2 36	5 173	2	0.1	100	-1 4	-1. 'Line 3.3	: Fe2+ ScaleFlag, angle, chemID, unitID, Min, Max, Direction, nMajorTicks, MCL	
1	2 324	160	2	0.1	100.	1 4	-1. 'Line 3.4	: SO4 ScaleFlag, angle, chemID, unitID, Min, Max, Direction, nMajorTicks, MCL	
	2 252	2 175	2	0.001	10.	1 5	-1. 'Line 3.5	: CH4 ScaleFlag, angle, chemID, unitID, Min, Max, Direction, nMajorTicks, MCL	
	6						'Line 4:	nRD_well	
1	Α						'Line 5.1:	well ID	
2	В						'Line 5.2:	well ID	
3	С						'Line 5.3:	well ID	
4	D						'Line 5.4:	well ID	
5	E						'Line 5.5:	well ID	
6	F						Line 5.6:	well ID	
	1						Line 6:	nRD_EventSeries	
	1	Ever	it_19	95-96			'Line 7.1:	Event ID, Filename	
-	1	2					Line 8:	nRD_RefSeries, input unitsID	
Re	ef-Bad	kgrour	d	action and and a	dodesto Lo		Line 9.1:	Ref Series filename	
10	ð. 10	00.6	05 2	50.	001		Line 10:	Background redox reference concentrations	
	2						Line 11:	NDflag (1=DL, 2=0.5*DL, 3=axis minimum)	
	200.						Line 12:	axis length (map units)	
	0						Line 13:	Calculate ratio of detected parent to daughter products? (0=no,1=yes)	
	0.						Line 15:	TICKLENGTMAJOPP	
	1						Line 16:	Output symbols for Event series? (0=no, 1=yes)	
	0						Line 17:	output symbols for Reference series? (0=no, 1=yes)	- 1

Golden Surfer® for Making Figures

Questions

Grant Carey, Ph.D. Porewater Solutions

613-270-9458 gcarey@porewater.com www.porewater.com

Supplemental Slides

Wurtsmith Air Force Base Case Study

Section 3.3

Wurtsmith Air Force Base, Michigan

Chapelle et al. (Env. Sci. & Tech., 1996)

- Chlorinated solvents and petroleum hydrocarbons used to start fires (1952-86)
- Contaminants seeped to underlying water table (5-8 m bgs)
- Permeable sands and gravels
- Four multilevel wells
 - 1" diameter
 - 0.3 m screens, separated by 0.2 to 0.5 m

Redox Radial Diagrams

Hydrogen Concentrations (Chapelle et al., 1996)

	H ₂ (nM)
Iron-reducers	0.2 to 0.8
Sulfate-reducers	1 to 4
Methanogens	5 to 15

Hydrogen Concentrations (Chapelle et al., 1996)

Hydrogen Concentrations (Chapelle et al., 1996)

Delineating Redox Zones Based on Indicator Concentrations

Redox Processes and Water Quality of Selected Principal Aquifer Systems

by P.B. McMahon¹ and F.H. Chapelle²

Ground Water, 2008, 46(2): 259-271

Redox Zone	Oxygen	Nitrate	Mn(II)	Fe(II)	SO4	Methane
Aerobic	≥0.5		<0.05	<0.1		
Nitrate reduction	<0.5	≥0.5	<0.05	<0.1		
Manganese reduction	<0.5	<0.5	≥0.5	<0.1		
Iron / Sulfate reduction	<0.5	<0.5	<0.5	≥0.1	≥0.5	
Methanogenesis	<0.5	<0.5		≥0.1	<0.5	

Wurtsmith Relative Redox Area by Zone

• Threshold Areas in Visual Bio – define RRA for the initial transition to each redox zone.

Relative Redox Area (RRA) =	Area of monitoring well polygon
	Area of reference polygon (Aerobic)

Relative Redox Area

Relative Redox Area Contours

Aerobic:	78 to 100%	\bigcirc
Nitrate-reducing:	60 to 78%	\bigcirc
Iron-reducing:	42 to 60%	\bigcirc
Sulfate-reducing:	24 to 42%	\bigcirc
Methanogenic:	≤24%	

RRA versus Hydrogen Concentration

Eh vs. Hydrogen Concentrations

